$\$ 9.2$
corg. 12
a) let A be a symmetrizabte matrix and let $\alpha \in \Delta+(A)$ be
 a hatis of the space 胃 $g_{n \alpha}^{\circ}$, where $g_{k \alpha}^{\circ}=\left\{x \in g_{k \alpha} \mid(x \mid y)=0\right.$ for all y from the subalgetra generated by $\left.g_{\alpha}, \cdots, g_{-(k-1) \alpha}\right\}$. provef: foceows from prop 9.12 by setting $L=\left\{k \alpha \mid k \in z_{+}\right\}$.

$$
\begin{aligned}
& \text { prop b:5: } \alpha \in \Delta \Delta_{f}^{i m}, n \alpha \in \Delta_{+}^{v i m} \nu+n \in z_{+} \quad \alpha \in \Delta_{+} \\
& g_{k \alpha}^{0}=\left\{x \in g_{n \alpha} \mid(x \mid y)=0 \text { for all } y \in\left[n^{2}, n^{2}\right]\right\} . \\
& \left(g_{\alpha} \mid g_{-\alpha}\right) \neq 0 .
\end{aligned}
$$

b) Let A be a generalized Cartar matrix and let $\alpha \in \Delta+(A)$ be an isotropic roob. Then $\left(\nu^{-1}(\alpha) \oplus\left({ }_{j \neq 0} g_{j \alpha}\right)\right.$ is an ingmive Herisenterg lie algetbra.
yroof: of α is an maginary root of an affine lie algarra. then b) armounts to prop 8.4 .
Reccall propg.4: Let $g(A)$ be an affine algetra
a) bet $t=\mathbb{C K}+\sum_{s i b}^{5} g_{s s}$, Then t is isomorphic to the
inginite - dmen. Heisenterg alg. wioh center $4 K$. Apptyang map 5.7 and remun 3.8 prove b) in ohe gemeral case. Recall: papps.7: Let A be symmeotrizable, A root α is isorospic (i.e: $(\alpha \mid \alpha)=0$) iff it is W-equivabent to an inagghary root is swen that supp is is a subdiagraan of affine sype of $\zeta(A)$ (then $B=k \delta)$

$$
\text { vem 3.8 }\left.\quad r_{i}^{\text {ade }} \in A u t g(A) \& r_{i}^{\text {ade }}\right|_{H 1}=r_{i}
$$

$\xi 9.13$
Heisenberg lie algebra of order ∞. That is a lie algebra won a basis $p_{\nu}, q_{i}(i=1,2, \cdots)$ and c, witt the following commutation retarorvis
$\left[p_{i}, q_{i}\right]=c \quad(j=1,2, \ldots)$ and all the other brackets are
zero. This is a milporent tie algebra with center ©C.

- Lit is were known that for every $a \in C^{x}$, the lie algebra s has an irreducitile representation σ_{a}, called canonical commutation relation representation, on the space $R=\Phi\left[x_{1}, x_{2}, \cdots\right]$ of polynomials in inginitery many indeterminates x_{j}, defined by $\sigma_{a}\left(p_{i}\right)=a \frac{\partial}{\partial x_{i}}, \quad \sigma_{a}\left(q_{i}\right)=x_{i}, \quad \sigma_{a}(c)=a 1_{R}$.
wage algebra. bchrödinger representation.
we devote this 3 -module by R_{a}.
- Uworoduce the following commutative subalgetras of s

$$
s_{+}=\sum_{j=1} C P_{j} \quad, \quad S_{-}=\sum_{j=1} C q_{j}
$$

- A vector v of an 3 -mochule is called a vacuum vector with eigenvalue $\lambda \in \phi$ 䜣 $s_{f}(v)=0$ and $c(v)=\lambda v$.
Note that s can be viewed as the tie algebra $g^{\prime}(0) / c_{1}$, where $z_{1}=\sum \phi\left(\alpha_{i}^{r}-\alpha_{j}^{l}\right) \subset \tau$ is a central ideal. So that u_{+} (resp. n-) is identified with 3_{+}(resp. 3-).
- Since $\left(R, \sigma_{a}\right)$ is a free $V\left(s_{-}\right)$-mochule of rank 1 . it is a Derma module over s, the vector 1 being the highest weight vector $=$ Vacuum vector.

Stowe - vow Newman theorem:
the canronical commutation relations on two generators (canonical coordinate q and canonical monnewtum p) in the form $[q, p]=i \hbar$ may be represented as unbounded operators on the Hilbert space of square integrable function $L^{2}(R)$ in the real line by defining them on the dense subspace of moth functor n $4: R \rightarrow \mathbb{C}$ as

$$
(q \psi)(x):=x \psi(x) \quad(p \psi)(x):=-i \hbar \frac{\partial}{\partial x} \psi(x) .
$$

where on the right we have the derivative along the canonical coordinate function on R. ζ chrödinger rep.
cor. 9.13 let v be an orredwible s-mochole which has a nonzew vaccum rector with a nonzero eigenvalue α, then the ξ-module V is isomorgetic to R_{λ}.

Lem 9.13
a) let v be an s-moelwhe such that $c=a l_{v} v$, where $a \neq 0$ which has a vacuum vector $v_{0} \neq 0$, such that $V=V\left(\xi_{-}\right)\left(v_{0}\right)$. Then the s-mochule V is isomorphic to Ra .
b) let V be an s-mochole such that C is doagonalizable worth nonzero eigenvalues end such that for every $v \in V$ there exists N such that $P_{i}, \cdots \operatorname{Prn}(v)=0$, wherever $w>N$, when V is isomorphic so a direct sum of s-modules of the form Ra, $a \neq 0$.

$$
g^{\prime}(0) / \tau_{1}
$$

proof: we con assume in b) that $c=a I_{v}$ work $a \neq 0$.
v many be viewed as a $g^{\prime}(0)$-mochule for which $a_{y}^{v}=$ ail for all r. Put when for every wright λ and for $\beta \in Q$ we have $\left\langle\lambda, \nu^{-1}(\beta)\right\rangle=\operatorname{aht} \beta . \quad\left(\beta=\sum_{i} k_{i} \alpha_{i}\right)$
bonce $(\beta) \beta)=0$ and $p=0$. (Lie algebra $g(0) \longrightarrow n \times n$ zero
$\left\langle p, \alpha_{v}^{v}\right\rangle=\frac{1}{\nu}$ ai $=0 . \quad$ matrix (including $n=\infty$)
were hove $\geqslant\left\langle\lambda+\rho, \nu^{-1}(\beta)\right\rangle=2 a \cot (\beta) \neq(\beta \mid \beta)$ for $\left.\beta \in Q+\mid \beta \circ\right\}$
by paopg-10 a) and b)

- The lie algebra ζ is often extended by a derivation do defined by: $\left.\quad i d_{0}, q_{j}\right\rceil=m_{j} q_{j}$, $\quad i d_{0}, p_{j} J=-m_{j} p_{j}$
where m_{j} are some positive integers.
The lie algebra $\&=\left(s+\mathbb{C} d_{0}\right) \oplus a_{0}$., where as is a finite dimensional central sekeal., is called an bsciblabor algebra - Given $b \in \mathbb{C}$ and $\lambda \in a_{0}^{*}$, we can extend the s-mochule R_{a} to the of - mochule $R_{a, b}, \lambda$, as follows $d_{0} \longmapsto b+\sum_{j} m_{j} x_{j} \frac{\partial}{\partial x_{j}}, a \longmapsto\langle\lambda, a\rangle 1$ for $a \in a_{0}$ let $s_{0}=\mathbb{C} C+\mathbb{C} d_{0}+a_{0}$, we have the triangles decompointion $A=\zeta_{-} \oplus \zeta_{0} \oplus \zeta_{1}$.
prop 9.13. Let V be an 4 -mochule such that so is diagonationke and c has only nonzero eigendrathes:
a) If where exists $v_{0} \in V, v_{0} \neq 0$, such what

$$
\zeta+\left(v_{0}\right)=0, \quad v\left(s_{-}\right) v_{0}=v .
$$

Then V is isomorphic to an A－mochole Ra，b，a，
b）let for every $v \in V$ ，there exists N such that
$P_{i_{1}} \cdots P_{\text {in }}(v)=0$ whenever $n>N$ ，then V is isomorph e to a direct sum of A－mocholes $R_{a, b, \lambda}, a \neq 0$ ．
－Note that the monomial $x_{1}^{j 1} \cdots x_{n}^{j n} \in R_{a, b, \lambda}$ is ans eigenvector of d_{0} with eigenvalue $\sum_{k} m_{k} j_{k}+b$ ．

$$
d_{0}\left(x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right)=b x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}+\sum_{k} m_{k} j_{k} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}=\left(\sum_{k} m_{k} j_{k}+b\right)\left(x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right) .
$$

Hence，for the 4 －rrochule $R=R a, b, \lambda$ with $a \neq 0$ ，we there

$$
\begin{aligned}
& \operatorname{tr}_{R} q^{d_{0}}=q^{b} \sum_{j=1}^{\infty}\left(1-q^{m_{j}}\right)^{-1} \\
& \Gamma \operatorname{tr}_{R} q^{d o}=\sum q^{\lambda}=\sum q^{b+\sum_{k}^{m_{k} j_{k}}}=q^{b} \sum q^{\sum_{k}^{m_{k}} j_{k}}=q^{b} \prod_{m_{k}} \sum_{j_{k}} q^{j k m_{k}} \\
&=q^{b} \prod_{m_{k}}\left(q^{0}+q^{m_{k}}+q^{2 m_{k}}+\cdots\right)=q^{b} \bar{m}_{m k}\left(1-q^{m_{k}}\right)^{-1}
\end{aligned}
$$

库刻画 charabzer。
Here，as usual，for a diagonalizable operator A on a vector space V with eigaveahes $\lambda_{1}, \lambda_{2}, \cdots$ counting the molt． one define： $\operatorname{tr}_{v} q^{A}=\sum_{\nu} q^{\lambda i}$ ．
$B\left(p_{n} x, y\right)=B\left(x, q_{n} y\right) \Rightarrow p_{n}$ is aelyoint $100 q_{n}$.
by 119.4 .2$) \quad B(g(x), y)=-B(x, w(g)(y))$

$$
\begin{aligned}
& \Rightarrow B\left(e_{i} x, y\right)=B\left(x, f_{i} y\right) . \\
& \& B\left(v_{n}, v_{n}\right)=\left\langle v_{n}\right\rangle=1
\end{aligned}
$$

claim：distinct mononials are orthogonal w．．．t．B and that：$B\left(x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}, x_{1}^{k_{1} \cdots} x_{n}^{k_{n}}\right)=a^{\sum k_{j}} \pi_{j} k_{j}$ ！
group：$B\left(a v_{\wedge}, a^{\prime} v_{\lambda}\right)=\left\langle\hat{\omega}(a) a^{\prime} v_{\lambda}\right\rangle$ where expectation value $\langle v\rangle \in \mathbb{4}$ ．ratifies $v=\langle v\rangle v_{N}+\sum_{\alpha \in\{\{\{0\rangle} v_{n-\alpha}$ ，where $v_{n-\alpha} \in v_{v-\alpha}$ ． then $B\left(x_{1}, x_{1}\right)=B\left(q_{1}, 1, q_{1} .1\right)=\left\langle p_{i} q_{i} .1\right\rangle=a$ ．

$$
\begin{gathered}
B\left(x_{1}^{k_{1}}, x_{1}^{k_{1}}=B\left(q_{1}^{k_{1}}, 1, q_{1}^{k_{1}} \cdot 1\right)=a^{k_{1}} k_{1}!\right. \\
B\left(x_{1}, x_{2}\right)=B\left(q_{1}, 1, q_{2}, 1\right)=\left\langle p_{1} q_{2}, 1\right\rangle=0
\end{gathered}
$$

- As in \&9.4. B can be woriotien also in ohe foblowing form:

$$
B(P, Q)=\left(P\left(a \frac{\partial}{\partial x_{1}}, a \frac{\partial}{\partial x_{2}}, \cdots\right) Q\left(x_{1}, x_{2}, \cdots\right)\right)(0) .
$$

g 9.14.
Recull: The tie eilgetra $\partial:=\bigoplus_{j \in z} \mathbb{C} d_{j}$ has a unique cup to isomorphism) nontrivial cenitral externsiben by a $1 \rightarrow$ dimeavsibual center, seny $\mathbb{C} C$, calced the Virassoro algetriva $V_{i r}$, whrch its definced by the fobloroing comm. relation:

$$
\left[d_{i}, d_{j}\right]=\left(r^{\prime}-j\right) d_{i+j}+\frac{1}{12}\left(i^{3}-i\right) \delta_{i,-j} c \quad\left(v^{\prime}, j \in z\right) .
$$

Define the triangular clecomposition of $V_{i r}$ as fobloves:

$$
V_{\text {iv }}=V_{\text {ir }} \oplus V_{\text {iro }} \oplus V_{\text {irt }} .
$$

where $v_{i r_{ \pm}}=\bigoplus_{j>0} \mathbb{C} d_{ \pm j}, \quad v_{i r_{0}}=\mathbb{O C} \oplus \mathbb{C} d_{0}$.

- Given $c, h \in \mathbb{C}$, define a Vor - modwole V weriah highest wheight $(c$, h) by the kequivement what there exists a nonzero vector $v=v_{c, h}, \quad s, t$.

$$
v_{i r_{+}}(v)=0, \quad V\left(v_{i r_{1}}\right) v=v, \quad d_{0}(v)=h v, \quad c(v)=c v .
$$

let is chear that c alits on $M(c, h)$ as $C 1$.

$$
\left(c v\left(v_{i_{r-}}\right) v=v\left(v_{i r_{-}}\right) c v_{1}\right) .
$$

The mumber C is called the conformal cenotal change.

- As in is 9.7. whe easity shore ohat ohe evements (9.14.1) $d_{-j_{n}} \cdots d_{-j_{2}} d_{-j_{1}}\left(v_{c,-h}\right) \quad$ where $0<j_{1} \leqslant j_{2} \leqslant \cdots$ form a basis of $M(c, h)$. since $\left[d_{0}, d-n\right]=n d-n$. we see thent do is diagonalizable on $M(c, h)$ with
specotrum $h+z_{+}$. and weith the ergenspace decompos, otion $M(c, h)=\bigoplus_{j \in\left(Z_{+}\right)} M(c, h)_{h+j}$
wehere $M(c, w)_{n+j}$ is spanned by elements of the form (q.14.1) wioh jit $\cdots+j_{n}=j$
- let followes ohat $\operatorname{dim} M(c, h)_{h+j}=P(j)$ where $P(j)$ is the classical partitrion function.
un mumber theory, the pawtion gunction p(n) represents the
number of pozsible peartions of a nonnegative integer n $p(0)=1, \quad p(n)=0, n<0$.
Un representation theory, the kostant peavizution function of a root systern Δ is whe number of ways one can reppresent
a vecior or weight as a non -negative integer tiseen
combination of the prositive noots $\Delta+\Delta$
Equaition $(9.14 .3)$ can be reversoben as foblowes
$\psi_{r_{M}(c, h)} q^{d_{0}}:=\sum_{\lambda} \operatorname{dim} M(c,-h)_{\lambda} q^{\lambda}=q^{h} \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{-1}$
As in 89.7 , The series $t r y q^{\text {do }}$ is called the formul cherracter of vir -mochle V.
The chevally inoolution w of V_{i} is degined by $w\left(d_{n}\right)=-d_{-n}, \quad w(c)=-c$.

